Using Technology in Teaching Introductory Statistics at SGU

Dishon Edwards^{1,2)}, Stefan Hypolite¹⁾, Sally-Ann Clement¹⁾, Aleksandr Mylläri¹⁾

¹⁾School of Arts and Sciences, St. George's University, Grenada, West Indies ²⁾TA Marryshow Community College, Grenada, West Indies

> Polynomial Computer Algebra 2024 April 15–20, 2024

Modern technology (computers, gadgets, computer algebra systems) changes the way **to do** mathematics and the way **to teach** mathematics and natural sciences.

We discuss the use of technology in teaching introductory statistics. Using computers in the course saves time by doing most of the work on the computer and leaves more time in class for explanations and discussions. It also prepares the student for the real life – no one does statistical analysis by hand today.

Computer Algebra Systems (CAS), such as Mathematica or Maple besides being easy to program basic formulas, provide a set of ready statistical tools ranging from basic descriptive statistics to fitting the models, cluster analysis, hypothesis testing and time-series analysis.

S	Statistical Quantities » Mean = Variance = StandardDeviation = Median = Quantile = Cova	ariance •
C N	Data Smoothing » MovingAverage • MovingMedian • ListCorrelate •	
S	Statistical Visualization » Histogram = SmoothHistogram = QuantilePlot = BoxWhiskerChart	·
F	Hypothesis Tests » DistributionFitTest • LocationTest • VarianceTest •	Probability & Statistics »
C	Cluster Analysis »	EstimatedDistribution • EmpiricalDistribution • Probability •
۵	Dendrogram • FindClusters • ClusteringTree •	Statistical Model Analysis » LinearModelFit • NonlinearModelFit • GeneralizedLinearModelFit •
		Random Sampling »

RandomReal • RandomInteger • RandomVariate • RandomChoice • ...

...

Data Fitting »

FindFit — find a general nonlinear fit Fit • Interpolation • LeastSquares • FindFormula • ...

Remembering our university studies in the 1970s...

Example : Find the variance and standard deviation for the following	g data:
---	---------

No. of order	f
10-12	4
13 – 15	12
16 – 18	20
19 – 21	14
Total	n = 50

S	പ	11	ti	n	n	•
D	UI	u	u	υ	11	•

No. of order	f	x	fx	fx^2
10 - 12	4	11	44	484
13 – 15	12	14	168	2352
16 – 18	20	17	340	5780
19 – 21	14	20	280	5600
Total	n = 50		832	14216

$$\overline{x} = \frac{\sum fx}{n} = \frac{832}{50} = 16.64$$

$$s^{2} = \frac{\sum fx^{2} - \frac{\left(\sum fx\right)^{2}}{n}}{n-1}$$

$$= \frac{14216 - \frac{\left(832\right)^{2}}{50}}{50-1}$$

$$= 7.5820$$

 $s = \sqrt{s^2} = \sqrt{7.5820} = 2.75$

Quartiles

Using the same method of calculation as in the Median, we can get Q_1 and Q_3 equation as follows:

$$Q_1 = L_{Q_1} + \left(\frac{\frac{n}{4} - F}{f_{Q_1}}\right)i \qquad \qquad Q_3 = L_{Q_3} + \left(\frac{\frac{3n}{4} - F}{f_{Q_3}}\right)i$$

Example: Based on the grouped data below, find the Interquartile Range

Time to travel to work	Frequency
1 – 10	8
11 – 20	14
21-30	12
31 – 40	9
41 – 50	7

*Solution: 1*st *Step: Construct the cumulative frequency distribution*

Time to travel to work	Frequency	Cumulative Frequency
1 – 10	8	8
11 – 20	14	22
21 - 30	12	34
31 – 40	9	43
41 - 50	7	50

 2^{nd} Step: Determine the Q_1 and Q_3

Class
$$Q_1 = \frac{n}{4} = \frac{50}{4} = 12.5$$

Class Q_1 is the 2nd class
Therefore,
 $Q_1 = L_{Q_1} + \left(\frac{\frac{n}{4} - F}{f_{Q_1}}\right)i$
 $= 10.5 + \left(\frac{12.5 - 8}{14}\right)10$
 $= 13.7143$

Interquartile Range

$$IQR = Q_3 - Q_1$$

$$IQR = Q_3 - Q_1$$

calculate the IQ IQR = $Q_3 - Q_1 = 34.3889 - 13.7143 = 20.6746$

Using technology

We encourage students to use *RCommander*.

RCommander can be installed on Windows as well as on MAC OS, it is free, fairly easy to use, and contains many tools and methods for statistical analysis. It can also be used as an intermediate step towards using R.

Using RCommander

RGui (64-bit)	
File Edit View Misc Packages Windows Help	
	1
Loading required pa R Commander - X	
Loading required pa File Edit Data Statistics Graphs Models Distributions Tools Help	
Loading required pa	
Loading required pa 🕞 Data set: TT < No active dataset 📝 Edit data set 🔯 View data set Model: 🗴 < No active model>	
Loading required pa	
Loading required pa R Script R Markdown	
Registered 53 metho	
cooke distance in	
influence.merMod	
dfbeta.influence.	
dfbetas.influence	
lattice theme set b	
See ?effectsTheme f	
Romdr Version 2.6-2	
×	
Attaching package:	
The following object output	
errorCondition	

R Commander

R Scatterplot Data Options x-variable (pick one) y-variable (pick one) AGE AGE \wedge Α ARM.CIRC ARM.CIRC BMI BMI DIASTOLIC DIASTOLIC GENDER..1.M. GENDER..1.M. HDL HDL v ¥ Plot by groups... Subset expression <all valid cases> > <

File Edit Data Statistics Graphs Models Distributions Tools Help

NOBEL 0.8006078 1.0000000

	uchi	
Response variable (pick one)	Explanatory variables (p	pick one or more)
CHOCOLATE A INTERNET NOBEL POPULATION	CHOCOLATE INTERNET NOBEL POPULATION	~
Subset expression		
<all cases="" valid=""></all>		
< >		

Response variable (p	ei: Kegivio oick one)	Explanatory variables	(pick one or more)	
CHOCOLATE	\neg	CHOCOLATE INTERNET		
NOBEL POPULATION	_	NOBEL POPULATION	~	
Subset expression <all cases="" valid=""></all>				
<	>			

```
> summary(RegModel.1)
Call:
lm(formula = NOBEL ~ CHOCOLATE, data = Dataset)
Residuals:
    Min 10 Median 30 Max
-12.8537 -2.9490 -0.2566 1.9791 19.3106
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.3667 2.7002 -1.247 0.226
CHOCOLATE 2.4931 0.4072 6.123 0.00000448 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.263 on 21 degrees of freedom
Multiple R-squared: 0.641, Adjusted R-squared: 0.6239
F-statistic: 37.49 on 1 and 21 DF, p-value: 0.000004477
```


R S	catterplot
Da	ta Options
5	Plot Options Jitter x-variable Jitter y-variable
	☐ Log y-axis ☐ Log y-axis ☐ Marginal boxplots ☑ Least-squares line ☐ Smooth line
	Show spread

Coefficients:						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	-3.3667	2.7002	-1.247	0.226		
CHOCOLATE	2.4931	0.4072	6.123	0.00000448	***	

R Commander	R Enter Two-Way Table
File Edit Data Statistics Graphs Models Distributions Tools Help	Table Statistics
R Script R Markdo Neans Means Proportions Enter and analyze two-way table Library (abin Nonparametric tests Dimensional analysis Fit models	Name for Row Variable (optional): Name for Column Variable (optional): Number of Rows: 2 Number of Columns: 2 Enter counts: 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
	Name for Dam Variable (antionally
Table Statistics	Name for Row Variable (optional):
Compute Percentages Row percentages Column percentages Percentages of total No percentages Hypothesis Test Chi-square test of independence Components of chi-square statistic Print expected frequencies Fisher's exact test 	Name for Column Variable (optional): Number of Rows: 4 Number of Columns: 2 Enter counts: 2 1 2 1 54 2 41 3 70 4 17
	🔞 Help 🦘 Reset 🛛 💞 OK

Alternatives:

JASP is open-source, free, *very easy to install* and has *very nice GUI*.

JASP

https://jasp-stats.org/

DOWNLOAD FEATURES SUPPORT TEACHING BLOG DONATE

JASP 0.16.4

Released October 3th, 2022.

This version adds the possibility to sync a SQL database, Bland-Altman Plots, improvements to factor analysis, and more. For a full list of new features and bug fixes see the <u>release notes</u>.

Good to Know

JASP is released under a <u>GNU Affero</u> <u>GPL v3 license</u>, which is an opensource license that guarantees that JASP will always be (for) free. For more information, see the <u>FAQ</u>).

Download JASP

Entirely for free, no strings attached.

Note: you'll need to export data as a .csv – file.

-* ***** and a second ×. I I I I i 🖣 🖣 Ĭ₫Ĩ₫ **T-Tests** ANOVA Mixed Models Regression Frequencies Distributions Machine Learning Summary Statistics Descriptives Factor Missing 0 Show main menu 5.804 Mean 3.279 Std. Deviation 0.700 Minimum 11.900 Maximum Descriptive Statistics Linear Regression Linear Regression Dependent Variable 🚴 COUNTRY ₽ NOBEL NOPULATION Model Summary - NOBEL **NTERNET** Method Model R R² Adjusted R² RMSE Enter ▼ 0.000 0.000 0.000 10.212 Ho Covariates 0.801 0.641 0.624 6.263 H₁ ► **CHOCOLATE** -ANOVA **N** 11 Sum of Squares F Model df Mean Square Factors 1470.449 1470.449 37.491 H₁ Regression 1 39.221 Residual 823.640 21 Total 2294.090 22 Note. The intercept model is omitted, as no meaningful information can be shown. WLS Weights (optional) • Coefficients Model Unstandardized Standard Error Standardized t Model 2.129 5.2 Ho (Intercept) 11.104 Statistics -3.367 2.700 (Intercept) -1.2 H₁ CHOCOLATE 2.493 0.407 0.801 6.1 Method Specification Plots

16 - Nobel Laureates and Chocolate* (C:\Teaching\Statistics\Data)

_

×

Problems and "problems"

Preferences

About

One Sample T-Test

One Sample T-Test

					95% CI for Mean Difference	
	t	df	р	Mean Difference	Lower	Upper
М	8.970	183	< .001	5726.897	4467.214	6986.579

Note. For the Student t-test, location difference estimate is given by the sample mean difference *d*.

Note. For the Student t-test, the alternative hypothesis specifies that the mean is different from 10000.

Note. Student's t-test.

```
One Sample t-test

data: PULSE

t = -5.9145, df = 152, p-value = 0.0000000106

alternative hypothesis: true mean is less than 75

95 percent confidence interval:

-Inf 71.09779

sample estimates:

mean of x

69.5817
```

Conclusions/Discussion

ChatGPT???

Thank you for attention!