Using Technology in Teaching Introductory Statistics at SGU

$$
\begin{aligned}
& \text { Dishon Edwards }{ }^{1,2)} \text {, Stefan Hypolite }{ }^{1)} \text {, } \\
& \text { Sally-Ann Clement }{ }^{1)} \text { Aleksandr Mylläri }{ }^{1)}
\end{aligned}
$$

${ }^{1)}$ School of Arts and Sciences, St. George's University, Grenada, West Indies
${ }^{2)}$ TA Marryshow Community College, Grenada, West Indies

Modern technology (computers, gadgets, computer algebra systems) changes the way to do mathematics and the way to teach mathematics and natural sciences.

We discuss the use of technology in teaching introductory statistics. Using computers in the course saves time by doing most of the work on the computer and leaves more time in class for explanations and discussions. It also prepares the student for the real life - no one does statistical analysis by hand today.

Computer Algebra Systems (CAS), such as Mathematica or Maple besides being easy to program basic formulas, provide a set of ready statistical tools ranging from basic descriptive statistics to fitting the models, cluster analysis, hypothesis testing and time-series analysis.

```
Statistical Quantities "
Mean - Variance - StandardDeviation - Median * Quantile - Covariance * ...
Data Smoothing "
MovingAverage - MovingMedian - ListCorrelate * ...
Statistical Visualization "
Histogram * SmoothHistogram * QuantilePlot * BoxWhiskerChart * ...
Hypothesis Tests"
DistributionFitTest * LocationTest * VarianceTest * ...
Cluster Analysis"
Dendrogram * FindClusters * ClusteringTree * ...
```

```
Probability & Statistics"
```

Probability \& Statistics"
EstimatedDistribution - EmpiricalDistribution - Probability * ...
EstimatedDistribution - EmpiricalDistribution - Probability * ...
Statistical Model Analysis "
Statistical Model Analysis "
LinearModelFit * NonlinearModelFit * GeneralizedLinearModelFit * ...
LinearModelFit * NonlinearModelFit * GeneralizedLinearModelFit * ...
Random Sampling "
Random Sampling "
RandomReal - RandomInteger - RandomVariate - RandomChoice * ...
RandomReal - RandomInteger - RandomVariate - RandomChoice * ...
Data Fitting "
FindFit - find a general nonlinear fit
Fit * Interpolation * LeastSquares * FindFormula * ...

```

Remembering our university studies in the 1970s...

Example: Find the variance and standard deviation for the following data:
\begin{tabular}{|c|c|}
\hline No. of order & \(f\) \\
\hline \(10-12\) & 4 \\
\(13-15\) & 12 \\
\(16-18\) & 20 \\
\(19-21\) & 14 \\
\hline Total & \(\mathrm{n}=50\) \\
\hline
\end{tabular}

Solution:
\begin{tabular}{|c|c|c|c|c|}
\hline No. of order & \(f\) & \(\boldsymbol{x}\) & \(\boldsymbol{f x}\) & \(\boldsymbol{f} \boldsymbol{x}^{\mathbf{2}}\) \\
\hline \(\mathbf{1 0 - \mathbf { 1 2 }}\) & \(\mathbf{4}\) & \(\mathbf{1 1}\) & \(\mathbf{4 4}\) & \(\mathbf{4 8 4}\) \\
\(\mathbf{1 3 - 1 5}\) & \(\mathbf{1 2}\) & \(\mathbf{1 4}\) & \(\mathbf{1 6 8}\) & 2352 \\
\(\mathbf{1 6 - 1 8}\) & \(\mathbf{2 0}\) & \(\mathbf{1 7}\) & \(\mathbf{3 4 0}\) & 5780 \\
\(\mathbf{1 9 - 2 1}\) & \(\mathbf{1 4}\) & \(\mathbf{2 0}\) & \(\mathbf{2 8 0}\) & 5600 \\
\hline Total & \(\mathrm{n}=\mathbf{5 0}\) & & \(\mathbf{8 3 2}\) & \(\mathbf{1 4 2 1 6}\) \\
\hline
\end{tabular}

\section*{Quartiles}

Using the same method of calculation as in the Median, we can get \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{3}\) equation as follows:
\[
Q_{1}=L_{Q_{1}}+\left(\frac{\frac{n}{4}-F}{f_{Q_{1}}}\right) i \quad Q_{3}=L_{Q_{3}}+\left(\frac{\frac{3 n}{4}-F}{f_{Q_{3}}}\right) i
\]

Example: Based on the grouped data below, find the Interquartile Range
\begin{tabular}{|c|c|}
\hline Time to travel to work & Frequency \\
\hline \(1-10\) & 8 \\
\(11-20\) & 14 \\
\(21-30\) & 12 \\
\(31-40\) & 9 \\
\(41-50\) & 7 \\
\hline
\end{tabular}

\section*{Solution:}
\(1^{\text {st }}\) Step: Construct the cumulative frequency distribution
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Time to travel \\
to work
\end{tabular} & Frequency & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
\hline \(1-10\) & 8 & 8 \\
\(11-20\) & 14 & 22 \\
\(21-30\) & 12 & 34 \\
\(31-40\) & 9 & 43 \\
\(41-50\) & 7 & 50 \\
\hline
\end{tabular}
\(2^{\text {nd }}\) Step: Determine the \(Q_{1}\) and \(Q_{3}\)
Class \(\mathrm{Q}_{1}=\frac{\mathrm{n}}{4}=\frac{50}{4}=12.5\)
Class \(\mathrm{Q}_{1}\) is the \(2^{\text {nd }}\) class Therefore,
\[
\begin{aligned}
Q_{1}=L_{Q_{1}} & +\left(\frac{\frac{n}{4}-F}{f_{Q_{1}}}\right) i \\
& =10.5+\left(\frac{12.5-8}{14}\right) 10 \\
& =13.7143
\end{aligned}
\]
\[
\begin{array}{ll}
\text { Class } \mathrm{Q}_{3}=\frac{3 \mathrm{n}}{4}=\frac{3(50)}{4}=37.5 & Q_{3}=L_{Q_{3}}+\left(\frac{\frac{n}{4}-F}{f_{Q_{3}}}\right) i \\
\begin{array}{ll}
\text { Class } \mathrm{Q}_{3} \text { is the } 4^{\text {th }} \text { class } & \\
\text { Therefore, } &
\end{array} & =30.5+\left(\frac{37.5-34}{9}\right) 10
\end{array}
\]

\section*{Interquartile Range}
\[
\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}
\]
\[
\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}
\]
calculate the IQ
\[
\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}=34.3889-13.7143=20.6746
\]

\section*{Using technology}

\section*{We encourage students to use RCommander.}

RCommander can be installed on Windows as well as on MAC OS, it is free, fairly easy to use, and contains many tools and methods for statistical analysis. It can also be used as an intermediate step towards using R.

\section*{Using RCommander}

RRGui（64－bit）
File Edit View Misc Packages Windows Help
图回回圆圆圂圈





data: CHOCOLATE and NOBEL
\(t=6.123\), df \(=21\), p-value \(=0.000004477\)
alternative hypothesis: true correlation is not equal to 0
95 percent conficlence interval:
0.57972050 .9118788
sample estimates:
cor
0.8006078
\(>\operatorname{cor}(\) Dataset \([, c(\) "CHOCOLATE", "NOBEL")], use="complete")
CHOCOLATE NOBEL
CHOCOLATE \(1.0000000 \quad 0.8006078\)
NOBEL 0.80060781 .0000000


R Linear Regression
Enter name for model: RegModel. 1
Response variable (pick one) Explanatory variables (pick one or more)
CHOCOLATE
INTERNET
NOBEL
POPULATION
CHOCOLATE
INTERNET
NOBEL
POPULATION
Subset expression
<all valid cases>
```

summary (RegModel.1)
Call:
lm(formula = NOBEL ~ CHOCOLATE, data = Dataset)
Residuals:
Min 1Q Median 3Q Max
-12.8537 -2.9490 -0.2566 1.9791 19.3106
Coefficients:
Estimate Std. Error t value Pr (>|t|)
(Intercept) -3.3667 2.7002 -1.247 0.226
CHOCOLATE 2.4931 0.4072 6.123 0.00000448 ***
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.263 on 21 degrees of freedom
Multiple R-squared: 0.641, Adjusted R-squared: 0.6239
F-statistic: 37.49 on 1 and 21 DF, p-value: 0.000004477

```
```

Coefficients:
Estimate Std. Error t value
Pr(>|t|)
(Intercept) -3.3667 2.7002 -1.247 0.226
CHOCOLATE 2.4931 0.4072 6.123 0.00000448

```


R Scatterplot

Data
Options

Plot Options
\(\square\) Jitter x-variableJitter \(y\)-variable
\(\square\) Log x -axis
\(\square\) Log \(y\)-axisMarginal boxplots
\(\square\) Least-squares lineSmooth lineShow spread

Coefficients:
Estimate Std. Error t value \(\operatorname{Pr}(>\mid \mathrm{t} \|)\)
(Intercept) \(-3.3667 \quad 2.7002 \quad-1.247 \quad 0.226\)
\(\begin{array}{llllll}\text { CHOCOLATE } & 2.4931 & 0.4072 & 6.123 & 0.00000448\end{array}\)



Table Statistics
Compute Percentages
Row percentages
Column percentagesPercentages of total
- No percentages

Hypothesis Test
\(\square\) Chi-square test of independence \(\checkmark\) Components of chi-square statistic


\section*{R Enter Two-Way Table \\ Table Statistics}

Name for Row Variable (optional):
Name for Column Variable (optional):
\(\square\)
\(\qquad\)
Number of Rows: \(\square\) 2
Number of Columns:\(\square\) 2
Enter counts:


\section*{Alternatives:}

\section*{JASP}

JASP is open-source, free, very easy to install and has very nice GUI.

\section*{JASP \\ https://iasp-stats.org/}
© (1)JSP

\section*{JASP 0.16.4}

Released October 3th, 2022.
This version adds the possibility to sync a SQL database, Bland-Altman Plots, improvements to factor analysis, and more. For a full list of new features and bug fixes see the release notes.

\section*{Good to Know}

JASP is released under a GNU Affero
GPL v3 license, which is an opensource license that guarantees that JASP will always be (for) free. For
more information, see the FAO).

Download JASP
Entirely for free, no strings attached.

d. Windows 64bit

The pre installed version can be used
f you cannot install JASP with the msi
installer. Please note that JASP 0.16.4
is not available for Windows 7


Linux
Flatpak/Linux Installation

Chromebook Installation

Note: you'll need to export data as a .csv - file.







Problems and "problems"



Open

Save

Save As

Export Results

Export Data

Sync Data

Close

\section*{Preferences}

About

\section*{One Sample T-Test}

One Sample T-Test
\begin{tabular}{ccccccc}
\hline & & & & & \multicolumn{2}{c}{\(95 \% \mathrm{Cl}\) for Mean Difference } \\
\cline { 5 - 7 } & t & df & p & Mean Difference & Lower & Upper \\
\hline M & 8.970 & 183 & \(<.001\) & 5726.897 & 4467.214 & 6986.579 \\
\hline
\end{tabular}

Note. For the Student t-test, location difference estimate is given by the sample
mean difference \(d\).
Note. For the Student t-test, the alternative hypothesis specifies that the mean is different from 10000
Note. Student's t-test.

\section*{One Sample t-test}
```

data: PULSE

```
\(t=-5.9145\), df \(=152, p\)-value \(=0.0000000106\)
alternative hypothesis: true mean is less than 75
95 pezcent confidence interval:
    -Inf 71.09779
sample estimates:
mean of x
    69.5817

\section*{Conclusions/Discussion}


\section*{ChatGPT???}

Thank you for attention!```

